

- a means to one's ends or an end to one's means?

Prof. Ian W. Fletcher

Surface Engineering & Analysis Laboratory

School of Mechanical and Systems Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU

Tel.(office M35)+44 (0)191 208 6788(lab G15a)+44 (0)191 208 5857(mobile)+44 (0)7754 735869

email: ian.fletcher@ncl.ac.uk

www.ncl.ac.uk/nexus

- a means to one's ends or an end to one's means?

Outline:

- SEAL
- XPS and SIMS
- What information is available?
- Examples
- Conclusions

- a means to one's ends or an end to one's means?

The Surface Engineering and Analysis Laboratory - SEAL

- a means to one's ends or an end to one's means?

An end to one's means?

- tendency to avoid surface analysis because it is too expensive
- commercial charges up to £3000 per day
- EPSRC Mid-range XPS facility at Newcastle 'NEXUS' free to EPSRC fundable researchers
- SEAL Ion Beam Tools may need to make a small charge to cover running costs
- SEAL has the best instrument base for surface analysis in Europe including XPS, ToFSIMS, Gas Cluster Ion Beams and Helium Ion Microscopy facilities

- a means to one's ends or an end to one's means?

An end to one's means?

• not here!

means to one's ends

What can we do?

 determine the elemental, chemical and molecular composition of the outermost surface regions of organic and inorganic materials using spectroscopy, imaging and depth profiling

How do we do it?

- X-Ray Photoelectron Spectroscopy, XPS or ESCA
- Static Secondary Ion Mass Spectrometry, SSIMS
- Dynamic Secondary Ion Mass Spectrometry, DSIMS

What is a surface?

Sampling Depths

Real surfaces are rarely pure materials!

Surface Chemical Analysis by XPS and SIMS

Surface Segregation Migration Phase Separation Crystallinity MW Contamination

Degradation tribology heat, light etc chemical University UK | Malaysia | Singapore

Bulk material

Surface Engineering coatings treatment flame, plasma, EB chemical Adsorption Corrosion Oxidation Hydrolysis

What is on there?

SurfactantsPolymersAnti-oxidantsResinsLubricants / slip agentsBiomaterialsMould Release agentsOligomersInorganics'Contaminants'Reaction / Process depositsetc. 9

#

λ vs photoelectron KE

XPS (ESCA)

X-ray Photoelectron Spectroscopy

- detects all elements except H
- detects 1 atom in 1000
- sampling depth from ~ 1nm to ~ 10nm
- relative quantification of elements and chemistry
- chemical information \Rightarrow

bonding, oxidation state, functional groups etc.

- 1-D linescans
- 2-D imaging at ~ 2µm resolution
- 3-D depth profiles
- solids and liquids
- electrical conductors and insulators
- analysis at -150°C up to 600°C
- automation

Relative Atomic Percentage Compositions - number density

nexus

Angle-resolved XPS

• tilt the sample ARXPS

or

 collect photoelectrons leaving the surface from a range of angles at the same time PARXPS

Thermo 'Thetaprobe'

316L Stainless Steel Surface – etched and air exposed

J. Vac. Sci. Technol. A 33 (5) 2015

Imaging XPS

- element and chemical state images
- 2µm spatial resolution
- Useful to align small area spectroscopy

Al on Si SEM test pattern

Al on Si SEM test pattern - 100 μm bars

"Hyperspectral Imaging"

- Record images at different BE's
- Select area ⇒ regenerate spectra

O1s images 533 - 527eV, 0.2eV step

Primary Ion Dose Density<1x10¹² ions cm⁻²>1x10¹³ ions cm⁻²

Typical surface = 1x10¹⁵ atoms cm⁻²

What is SIMS?

SSIMS

Static Secondary Ion Mass Spectrometry

SSIMS

Static Secondary Ion Mass Spectrometry

SSIMS

Static Secondary Ion Mass Spectrometry

Any type of mass spectrometer can be used:

Quadrupole Magnetic sector

Time-of-Flight

- high transmission = high signal levels
- parallel detection = fast acquisition
- high mass resolution
- pulsed system

TOFSIMS

www.iontof.com

The Ion-Tof 'ToF-SIMS IV – 200' Instrument

- 8" sample capability
- automation
- -150°C to 600°C
- Ga⁺, In⁺, Au_n⁺, Bi_n⁺, SF₅⁺
 Cs⁺, Ar⁺ and O₂⁺ ion
 sources
 - high signal levels for molecular species
 - imaging of molecular species at ~ 0.3µm resolution

The lonoptika J105 SIMS

Not only C_{60}^+ and Ar_{4000}^+ but also

[H₂O]₆₀₀₀⁺ cluster ion beam source

Ionoptika J105 SIMS

What information is available?

- Detects all elements
- Mass range up to 20000 Da
- ppm ppb sensitivity
- Spectrometry
 - 'fingerprint' characteristic spectra from Static SIMS
 - molecular identification of organic and inorganic species
 - relative quantification of molecular species
 - high mass resolution (m/ Δ m ~10000+)
- Imaging
 - 0.3 μ m resolution
- Depth profiles
 - inorganic and organic materials
 - -- ~1nm depth resolution

What information is available?

'Retrospective' spectrometry, imaging and depth profiling
 Every 2D pixel or 3D voxel contains a full mass spectrum

- Solids and liquids
- Electrical conductors and insulators
- Analysis at -150°C up to 600°C
 - Thermal Desorption SIMS

High Mass-Resolution SSIMS

- m/∆m = 10000+
- identify ion composition from accurate mass
- resolve inorganic from organic species (e.g. Fe⁺ / C₄H₈⁺)
- elemental and molecular information
- ppm sensitivity
- novel information
- facilitates relative quantification
- probe active surface chemistry
- identify poisons / deactivation mechanisms
- oxidation state information
- compound identification

Si wafer m/z 30

Positive ion high mass resolution SSIMS spectra

m/z +71

Discrete peak areas

Relative quantification

Latest developments

Topography independent mass resolution

also Large Depth of Field

Cr image of an M1.6 screw

J105:

Surface Chemical Analysis by XPS and SIMS

'Traditional' design (lontof, PHI):

500μm x 500μm

750μm x 750μm

Imaging SSIMS

Molecular species, elements, small fragment ions ca. 300nm spatial resolution 'Hyperspectral' Imaging - every pixel contains a full mass spectrum

Science:

distribution / location of species structure / property relationships migration studies coating defects / small area analysis

Sales and Marketing: getting the message across "If I can't picture it, I can't understand it"

Segregation of PET trimer

Heated PET film:

Total Ion Image

PET trimer m/z +577

- Single 50 μ m particle on a 3.5" Floppy Disk surface
- **Imaging SSIMS analysis**
 - each pixel has a full mass spectrum
 - select defined small areas
 - regenerate spectra
- PET particle on top of coating
 - clean up
 - modify machinery
 - 100% pass rate for particulates!
 - reduced costs

Coating problem

unexpected segregation of 2 coating components identified by SSIMS

product not working at all 6 months wasted project time

process modified repeatable, uniform coverage

product working as predicted!

 $250 \mu m \ x \ 250 \mu m$

SSIMS Images of coated polymer microspheres

Surfactant

Contaminant

Surfactant (green) Contaminant (red)

XPS indicated the average surfactant thickness = 0.9nm

Static ToFSIMS images of a flavoured potato crisp:

Total Ion Image

Diglycerides

Na (green) Flavour Enhancer (red)

500μm x 500μm

Molecular SSIMS images from human hair showing various treatment residues

SSIMS Images of Polypropylene fibres used in nappies

Product Performance depends on:

- Fibre surface chemistry / treatment
- Surface coverage
- Porosity of the non-woven fabric
- 'ESC' treatment more uniformly distributed
- 'ESC' treated fabric outperforms competitive materials

ESC

SSIMS Images of Polypropylene carpet fibres

- Tri-lobal fibres
- Treatment to reduce friction during processing
- 'ESC' treatment applied at 5x lower level
- Outperformed competitive treatments
- Images used for Sales & Marketing

ESC Competitor "A picture paints a thousand words..."

Detection of Volatile Materials

Fragrances on Human hair:

- small molecules, volatile / mobile species: analysis at -110 °C
- treatment shown in 'yellow / red', [M-H]⁻

250μm x 250μm

128μm x 128μm

Primary Ion Dose Density <1x10¹² ions cm⁻² >1x10¹³ ions cm⁻²

Typical surface = 1x10¹⁵ atoms cm⁻²

www.iontof.com

Depth Profiling – Dynamic SIMS

Sample: 700 eV B⁺ implant in Silicon

www.iontof.com

Depth Profiling – Dynamic SIMS

Typical Questions Asked:

Specific:

- Is there any X present?
- How much is present?
- How is it distributed?
 - 1- or 2-D
 - depth
 - 3-D
- Locus of failure?

General:

- What is it?
- Where is it?
- What is different between good and bad samples?
- Why is it failing?
- Why won't it stick?
 - adhesion
 - Iaminates
 - printing / coating
- Why is theirs better than ours?

R&T, Production, Process monitoring / development, QC, Patent protection, SHE

Typical applications:

- failure analysis –
- laminates, metallised layers, heat-seal adhesive joints, coating issues
- coating defects
- printing defects
- adhesive developments
- materials developments
- surface pre-treatment
- primer developments
- contamination
- corrosion studies
- additive migration / bloom
- competitive material analysis
- pharmaceutical / medical

Latest developments

- Topography independent mass resolution
- C₆₀⁺ ion source
- Ar₄₀₀₀⁺ cluster ion source
- (H₂O)₆₀₀₀⁺ cluster ion source
- Mass Spec Mass Spec MSMS
- 10nm spatial resolution
- SALVI

Latest developments

- C₆₀⁺ ion source
 - 200nm spatial resolution
 - enhanced signal levels for molecular species
 - organic, inorganic and mixed depth profiling
 - analysis of buried interfaces

Depth Profiling – Dynamic SIMS

NIST NiCr sample, 66 and 53 nm alternating layers. C_{60}^+ ion source

Latest developments

- Ar₄₀₀₀⁺ cluster ion source
 - 500, 1000, 2000 and 4000 cluster sizes
 - 2 micron spatial resolution
 - analysis of real (contaminated) samples
 - enhanced signal levels for molecular species
 - organic depth profiling
 - analysis of buried interfaces

C47H82O13P

Imaging intact lipid species in mouse brain tissue.

Large Image is $2.5 \times 2.5 \text{ mm}^2$, 10 µm/pixel

Detailed image has area 512 x 512 mm² acquired at $2 \mu m/pixel$.

Dose of 6e12, negative ion mode

IONO	РТ	IKA
	ion heam	technology

PI(38:4)

1.83

885,5509

Freeze dried biopsy tissue

Single peak mass images, full mass spectrum available at each pixel

Tissue Imaging with Ar₄₀₀₀ on frozen hydrated tissue section

Depth profiling of Organic Materials

SSIMS destroys the surface

- How to get more useful signal from the same amount of surface?
- Use cluster ion beams e.g. Au_xⁿ⁺, Bi_xⁿ⁺, Ar₄₀₀₀⁺ or polyatomic ions SF₅⁺, C₆₀⁺, C₂₄H₁₂⁺ or low energy Cs⁺ e.g. 200eV

- Lower impact energy per atom
 less mixing, fragmentation and sub-surface damage
- More signal from molecular species for a given ion dose e.g. Bi₃²⁺ ca. 50000 x Ga⁺
- No apparent damage?

- Larger volume is altered for Ga
- 15x more material removed with C₆₀

 C_{60} bombardment calculations, Zbigniew Postawa; Enhancement of Sputtering Yields due to C_{60} vs. Ga Bombardment of Ag{111} as Explored by Molecular Dynamics Simulations, Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Anal. Chem., **75**, 4402-4407 (2003); Microscopic insights into the sputtering of Ag{111} induced by C_{60} and Ga Bombardment, *ibid.*, J. Phys. Chem. B, **108**, 7831-7838 (2004).

Ar₂₅₀₀+

Depth profiling of organic materials using polyatomic ions Bi_xⁿ⁺, SF₅⁺, C₆₀⁺

Thick polymer coating \rightarrow containing drug on substrate

Thin polymer layer on Si substrate

~ constant signal from molecular species

Modern Gas Cluster Ion Sources allow depth profiling through organic materials and devices with little or no damage to the molecular structures ...

Sample: OML 03-I from NPL

A.G. Shard*, R Foster, I. S. Gilmore, J. L. S. Lee, S. Ray, L. Yang VAMAS Interlaboratory Study on Organic Depth Profiling Analytical Conditions: Sputtering: Ar₁₇₀₀, 2.5 keV, 45°, rotation Analysis: Bi₃

3D Imaging Static SIMS - Yucca plant leaf

3D Imaging Static SIMS - Yucca plant leaf

- Full mass spectrum in each 2D pixel or 3D voxel
- Big datafiles: 1TB+
- Principal Component Analysis
- Usually a slow process
- New algorithm PJC
- Very fast
- 10 seconds vs 27 hours
- Quickly screen data
- Reprocess to ID chemistry etc.
- Overall a very powerful toolkit!

Latest developments

- (H₂O)₆₀₀₀⁺ cluster ion source
 - 10 to >100x more signal for protonated species compared to Ar₄₀₀₀⁺
 - 2 micron spatial resolution
 - lower detection limits
 - analysis of real therapeutic dose levels
 - trace analysis

Latest developments

- Mass Spec Mass Spec MSMS
 - Collision Induced Dissociation of secondary ion species produces spectra that are similar to 'normal' mass spectra
 - comparison with standard databases
 - facilitates identification / interpretation

ion beam technology

Surface Chemical Analysis by XPS and SIMS

MSMS of Diacylglycerides in Fly brain

Latest developments

- 10nm spatial resolution
 - Magnetic Sector upgrade to Zeiss Orion HIM
 - Ne⁺ primary ions

Examples of Applications

- Based on real examples and real data
- Some details changed to preserve confidentiality etc.

Surface contamination and cleaning

Surface contamination and cleaning

Relative Atomic Percentage Composition

	Al foil	Contaminated
Mg	5	0.2
0	58	24
С	10	65
ΑΙ	27	8
Na	-	0.8
Κ	-	1.1
CI	-	0.6
S	-	0.4

Can't touch the sample for analysis!

Care also with sample packaging

Polymer surfaces more favourable than metals, but beware:

Solvent purity / contamination Plastic wash-bottles Contaminated glassware Extractables in tissues / cloths etc.

- very common family of materials
- many applications (lubricant, release agent, anti-foamer.....)
- mobile, spreads easily
- cannot easily distinguish siloxanes from silicates by XPS
- very characteristic SSIMS spectra
- enough silicone manufactured to cover the surface of the Earth to a level of several nm deep!

Typical example

- Polymer material used in adhesive application
- One 'Good' sample, one 'Bad'
- Why?
- XPS: 10% Si on Good, 20% on Bad!! (Pure PDMS = 25% Si)
- SSIMS: dominated by PDMS signal

- Streaks and smears on extruded product
- Extruder lips cleaned with a proprietary domestic spray cleaner
- 'Silicone free' according to manufacturer

- Streaks and smears on extruded product
- Extruder lips cleaned with a proprietary domestic spray cleaner
- 'Silicone free' according to manufacturer
- Anti-foam additive

- Streaks and smears on extruded product
- Extruder lips cleaned with a proprietary domestic spray cleaner
- 'Silicone free' according to manufacturer
- Anti-foam additive
- Always shoot the man with the oily rag!

- Streaks and smears on extruded product
- Extruder lips cleaned with a proprietary domestic spray cleaner
- 'Silicone free' according to manufacturer
- Anti-foam additive
- Always shoot the man with the oily rag!
- Cleanroom example

- Streaks and smears on extruded product
- Extruder lips cleaned with a proprietary domestic spray cleaner
- 'Silicone free' according to manufacturer
- Anti-foam additive
- Always shoot the man with the oily rag!
- Cleanroom example
- Aerospace example

- Streaks and smears on extruded product
- Extruder lips cleaned with a proprietary domestic spray cleaner
- 'Silicone free' according to manufacturer
- Anti-foam additive
- Always shoot the man with the oily rag!
- Cleanroom example
- Aerospace example
- Automotive example

High speed failures of novel suspension component

- 3 major testing accidents at 170mph+
- adhesive failure between CF and Ti components
- cause traced to inadequate cleaning of machined Ti
- fixed in time for the final races of 2001 season
- won the race & Drivers and Constructors championships
- new suspension design also used in 2002, 2003, 2004.....

Not only fingerprints and PDMS, but also

- hydrocarbons
- fluorocarbons
- amides
- anti-oxidants
- UV stabilisers
- mould release agents
- surfactants
- mobile additives
- oligomers

.

- particulates

• one man's product is another man's contaminant

Failed coating example

- high-end vehicle doors extra holes in the door panel cut by hand to fit new lock design
- painted as normal
- paint blisters forming after several months service

- ToFSIMS analysis from underside of paint flake
 - traces of original cutting fluid
 - - inadequate cleaning after cutting

Failed coating example

- internal coating on pipework failing leading to corrosion
- offshore application expensive and difficult to repair
- repeating pattern noticed every few metres along the pipe

- ToFSIMS analysis
 - traces of high pressure hydraulic oil between the coating and the steel pipe surface

pipe manufacturing process issue identified

Failed coating example

- Bottle label falling off during re-use washing cycle
- expected sequence: wash / rinse / remove label

XPS / SIMS analysis of a coated can

- metal processing
- cleaning
- inner coating
- outer coating
- printing
- Iacquer

XPS / SIMS analysis of a coated can

- metal processing
- cleaning
- inner coating
- outer coating
- printing
- Iacquer

Plane of failure analyses

Packaging laminate

Adhesion Pretreat Adhesive PF

97

Identification of an Unknown Green Slime by XPS!

- Urgent problem what is it and where did it come from?
- Sample dried in air at 50°C for 1 hour

Sample	Relative Atomic Percentage Composition			
	C	S	Ô	Cr
Unknown	64.4	8.2	24.7	2.7
Cr Tosylate	61.8	8.8	26.5	2.9

Significant aromatic character in C1s spectrum O:S ratio ~ 3:1 S:Cr ratio ~ 3:1 Cr as Cr III, S oxidised, sulphate or sulphonate-like

Overall, results consistent with: $(CH_3 - C_6H_4 - SO_3)_3Cr$

Overlayer - substrate interactions

- Compare thin layer with a relatively thick layer
- Overlayer thickness determination

Overlayer - substrate interactions

- Compare thin layer with a relatively thick layer
- Overlayer thickness determination

 primary bonds secondary bonds

Bond Type	Energy/kJmol ⁻¹	
Ionic	600-1100	
Covalent	60-700	
Metallic	110-350	
Brönsted Acid-Base	Up to 1000	
Lewis Acid-Base	Up to 80	
Hydrogen Bonds (incl F)	Up to 40	
Hydrogen Bonds (excl F)	10-25	
Permanent Dipole-Dipole	4-20	
Dipole-Induced Dipole	< 2	
Dispersion Forces	0.08-40	

van der Waals bonds

Adsorption Isotherms

- XPS provides reliable quantitative surface chemical analysis
- ToF-SIMS provides semi-quantitative molecular data
- Both can be used to estimate density of bonding sites and bond type

"Thermal Desorption" SSIMS

500μm x 500μm

Treated Metal Surface

- 2 additives A and B
- competitive adsorption onto metal surface
- ~4 nm thick layer
- TD SSIMS analysis from 30 400 °C
- use of molecular ions for each additive
- estimate desorption energies from T at the maximum rate of desorption

Buried Interfaces & Depth Profiling of Organic Materials

- Ultra Low Angle Microtomy ULAM
 - small samples
 - glass / diamond knife
 - prepare many samples

0.02°

0.3 microns per mm 0.3nm per micron

Depth Profiling of Organic Materials

- ULAM
- sampling depths

XPS ~ 10nmSSIMS ~ 1nm

spatial resolution / depth resolution

- XPS ~ 55 x 55 μm
- **>** SSIMS ~ 100 x 100 μm
- \rightarrow iSSIMS ~ 1 μ m = ~ 1 nm

= ~ 17 nm at 0.02°

= ~ 30 nm

122

Depth Profiling of Organic Materials

- ULAM
 - spreading of mobile species?
 - cut inside to out as well
 - cryo prep

0.3 microns per mm

0.3nm per micron

Depth Profiling of Organic Materials

Depth Profiling of Organic Materials

• ULAM

Surface Chemical Analysis by XPS and SIMS

Depth Profiling of Organic Materials

Depth Profiling of Organic Materials

• ULAM

Catalyst deactivation problem

 Problem encountered during commissioning of a new plant design

Catalyst deactivation problem

- Problem encountered during commissioning of a new plant design
- Exhaust catalyst damaged within minutes of start-up

Why?

Fit a new £0.5M catalyst or not?

Urgent problem received on a Friday evening!

Initial SSIMS and XPS analysis

Note: Br present at ~ 5 atoms in 1000 by XPS

Bromomethane present in exhaust gas stream at low level

BUT – no reaction with catalyst under <u>any</u> conditions

Note: Cu present at only 1 atom in 1000 by XPS

Catalyst deactivation problem

- root cause identified
- temporary fix
- Ionger term solution £10M cost

Scrubbers

Catalyst deactivation problem root cause identified temporary fix longer term solution £10M cost saved £0.5M catalyst **Gas torches** license to operate £200M investment **Catalyst Bed** reputation 2 similar plant designs ... Heat

Exchangers

Exhaust Gas

- XPS and SIMS should be considered whenever surface chemistry is involved or when surface chemical information is required
- Very powerful capabilities at SEAL available to all!
- Capability = f {equipment, people (experience + ability)}
- Enabling support for research and development
- Problem solving support for processes and production
- Pushing the limits

- XPS and SIMS should be considered whenever surface chemistry is involved or when surface chemical information is required
- Very powerful capabilities at SEAL available to all!
- Capability = f {equipment, people (experience + ability)}
- Enabling support for research and development
- Problem solving support for processes and production
- Pushing the limits
- If you have a problem, if no one else can help, and if you can find them, maybe you can hire ... the SEAL Team!

- SEAL has the best instrument base for surface analysis in Europe including XPS, ToFSIMS, Gas Cluster Ion Beams and Helium Ion Microscopy facilities
- Also UPS, ISS, SEM, EDX, FIB, AES, AFM, SPM, QCM, GDOES, White-Light Interferometry and Raman Microscopy
- If we can't do it, it probably can't be done!

- SEAL has the best instrument base for surface analysis in Europe including XPS, ToFSIMS, Gas Cluster Ion Beams and Helium Ion Microscopy facilities
- Also UPS, ISS, SEM, EDX, FIB, AES, AFM, SPM, QCM, GDOES, White-Light Interferometry and Raman Microscopy
- Thank you for the invitation and for your attention!

